Test one in math 611 7/4/2012

1- a) Show that the space I^p is complete.

2- Show that the set X of all continuous real valued functions on $\left[0,1\right]$ is not complete.

3- a) Show that the space s is metric

b) Show that in the space s we have $x_n \to x$ iff $\zeta_j^{(n)} \to \zeta_j$ for all j=1,2,..... where $x_n = (\zeta_i^{(n)})$, $x=(\zeta_j)$

c) Show that the space s is complete.

4- Let T be a bounded linear operator from a normed space X onto a normed space Y. If there a positive b such that $||Tx|| \ge b||x||$. Show that $T^{-1} : Y \to X$ is bounded.

5-a) Let T:C[0,1] \rightarrow C[0,1] be defined by y(t)= $\int_0^t x(\tau)d\tau$. find R(T) and T⁻¹ : $R(T) \rightarrow C[0,1]$ is T⁻¹ linear and bounded?

b) Define a linear functional f on C[a,b] as $f(x) = \int_a^b x(t)dt$ $x \in C[a,b]$ prove that ||f|| = b - a

6- State and prove Hann- Banach theorem.

7- Let X,Y be normed spaces and $T_n : X \to Y$ be bounded linear operators , show that if $T_n \to T$ implies for every $\in > 0, \exists N$ such that $n \ge N$ and x is any closed ball, we have $||T_n x - Tx|| < \epsilon$.

8- Let T be abounded linear operator prove that a) if $x_n \rightarrow x$ then $Tx_n \rightarrow Tx$ b) N(T) null space is closed.

9) If T is a bounded linear operator shoe that for any $x \in D(T)$ s.t. ||x|| < 1 then ||Tx|| < ||T||

: